
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2009; 61:185–219
Published online 4 November 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1945

Implicit meanflow–multigrid algorithms for Reynolds stress model
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SUMMARY

The present paper investigates the multigrid (MG) acceleration of compressible Reynolds-averaged
Navier–Stokes computations using Reynolds-stress model 7-equation turbulence closures, as well as lower-
level 2-equation models. The basic single-grid SG algorithm combines upwind-biased discretization with
a subiterative local-dual-time-stepping time-integration procedure. MG acceleration, using characteristic
MG restriction and prolongation operators, is applied on meanflow variables only (MF–MG), turbulence
variables being simply injected onto coarser grids. A previously developed non-time-consistent (for steady
flows) full-approximation-multigrid (s–MG) is assessed for 3-D anisotropy-driven and/or separated flows,
which are dominated by the convergence of turbulence variables. Even for these difficult test cases
CPU-speed-ups rCPUSUP∈[3,5] are obtained. Alternative, potentially time-consistent approaches (unsteady
u–MG), where MG acceleration is applied at each subiteration, are also examined, using different
subiterative strategies, MG cycles, and turbulence models. For 2-D shock wave/turbulent boundary layer
interaction, the fastest s–MG approach, with a V(2,0) sawtooth cycle, systematically yields CPU-speed-ups
of 5± 1

2 , quasi-independent of the particular turbulence closure used. Copyright q 2008 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Several authors have contributed to the development of computational methods for the simulation
of complex flows modelled using second-moment closures (SMC) [1–16]. Virtually all of these
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Paris, France.

†E-mail: isabelle.vallet@upmc.fr

Copyright q 2008 John Wiley & Sons, Ltd.



186 G. A. GEROLYMOS AND I. VALLET

methods are upwind-biased and implicit, to achieve the desirable robustness and efficiency, in
the implementation of 7-equation full Reynolds stress models (RSMs). Fully converged results
for complex aerospace configurations can be obtained by such single-grid (SG) efficient implicit
solvers, on large computational meshes with O(107) points, in O(100) CPU-h, on a computer/code
combination with 4Gflops−1 sustained performance [17, 18] (the CPU-time may vary by a factor 2,
both upward and downward, depending on flow complexity, global boundary conditions well
posedness, and Mach number).

Multigrid (MG) convergence acceleration is expected to further enhance computational
efficiency, but, to the authors’ knowledge, very little work has been done on the MG compu-
tation of the Reynolds-averaged Navier–Stokes (RANS) equations with 7-equation Reynolds
stress closures, both for incompressible Reynolds-averaged Navier–Stokes (iRANS) [19, 20]
and for compressible Reynolds-averaged Navier–Stokes (cRANS) [17, 18, 21]. Careful exam-
ination of these previous studies (Table I) shows that evaluation of CPU-speed-up obtained
by MG, for computations with SMC, has been reported only by Lien and Leschziner [20]
for iRANS (CPU-speed-up-ratio rCPUSUP=9 using LGRD=4 grids, i.e. the fine grid and three
coarser grids), and by Gerolymos and Vallet [17, 18] for cRANS (rCPUSUP=4 with LGRD=3).
These authors [17, 18, 20] have also reported CPU-speed-ups obtained with the same MG
method for 2-equation closures. Lien and Leschziner [20] report slightly higher CPU-speed-
ups for the k−ε MG solver than for the RSM MG solver, viz 14 vs 9. Gerolymos and
Vallet [17, 18] observe similar CPU-speed-ups rCPUSUP=4, in both cases. In order to assess the
effectiveness of these approaches, one has to evaluate the speed-ups achieved by comparison
with published studies on MG methods for 2-equation models, for iRANS [19, 30–36], and
cRANS [17, 18, 20, 21, 35, 37–51], respectively (Tables II, III). Although the lists of MG methods
for RANS with multi-equation turbulence models (Tables I–III) may be incomplete, they give
a representative overview of existing methods and of author-evaluated CPU-speed-ups. Various
criteria were used by different authors in reporting CPU-speed-ups e.g. convergence of residuals
to machine-precision or until saturation, reduction of residuals by a given number of orders-
of-magnitude, convergence of selected local and/or global flow quantities, etc.), so that these
CPU-speed-ups (Tables I–III) should be considered as an approximate indication of
performance.

Review of MG methods with 2-equation models (Tables II, III) indicates that, in general, LGRD∈
[3,4] are used, both for iRANS and cRANS, but also that the CPU-speed-ups obtained with the
pressure-based (PB) iRANS methods are higher, by a factor of 21

2 , than those obtained with the
time marching (TM) cRANS methods. It is not clear whether these higher CPU-speed-ups for
PB–iRANS are related to the systematic use of full multigrid (FMG) by these methods or to the
nature of the incompressible flow equations and/or the properties of the solvers. Nonetheless, one
has to bear in mind that cRANS address generally nonsmooth flows (flows with shock waves),
with corresponding serious computational difficulties. Furthermore, Lien and Leschziner [20] have
observed that full approximation scheme FAS–FMG computations are faster by a factor of at
least 2 compared to FAS–MG without FMG (most iRANS methods use FMG). Notice also that
Cornelius et al. [34] report, for PB–iRANS FAS–FMG computations, severe deterioration of CPU-
speed-up when using highly non-orthogonal grids (from rCPUSUP=9 obtained on quasi-orthogonal
grids down to rCPUSUP=2). Concentrating on the cRANS MG-solvers, which are the subject of
the present work, reported author-evaluated CPU-speed-ups with 2-equation closures are in the
range rCPUSUP∼=4 (Table III).
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Table II. Overview of multigrid methods for incompressible RANS with 2-equation turbulence models.

Multigrid Speed-up

CPU-
Author(s) Year Model Method Grid Strategy Turbulence Cycle LGRD speed-up

Demuren [19] 1992 [52] PB s FAS–FMG MF–MG V(1,1) 3 na
Claus and Vanka [30] 1992 [52] PB s FAS–FMG MF–MG V 5 na∗
Shyy et al. [31, 32] 1993 [52] PB s FAS–FMG RD+PPP V 6 na
Lien and Leschziner [20] 1994 [52] PB s FAS–FMG RD+PPP V† 4 14
Nowak and Salcudean [33] 1996 [52] PB s NLMG RD+PPP V 3 na
Cornelius et al. [34] 1999 [52] PB s FAS–FMG na V‡ 3 9§

Vázquez et al. [35] 2004 [53] SUPG u FAS–FMG RD+PPP+STR V 3 10
Yan et al. [36] 2007 [52, 54] PB s FAS–FMG RD+PPP V 4 12

NLMG–fmg RD+PPP V 3 8
NLMG–fmg RD+PPP V 4 36

∗Claus and Vanka [30] report a factor 41 CPU-speed-up with LGRD=5.†V(1,1) or V(2,2) [20].
‡V(NV1 ,NV2) with [34] NV1 ∈[4,6] and NV2 ∈[1,4].
§For test cases with good grid-orthogonality CPU-speed-ups >9 were obtained, while for a test case with
poor grid-orthogonality CPU-speed-up was only 2; PB: pressure-based [27]; SUPG: streamline-upwind/Petrov–
Galerkin [55]; s: structured grid; u: unstructured grid; NLMG: nonlinear multigrid [56]; FAS: full approximation
scheme [29]; FMG: full multigrid [29]; MF–MG: meanflow multigrid [17]; STR: source terms restriction
[37, 41, 42]; RD: residuals damping [20]; PPP: positivity preserving prolongation fix [20]; LGRD: number
of grid levels (including fine grid); speed-up: actual speed-up in CPU-time (to reach some author-dependent
convergence criterion); na: not available.

One common issue of these MG-techniques (Tables I–III) concerns the particular way the
turbulence-transport equations are treated. There are three different approaches:

1. Meanflow–multigrid (MF–MG): In this approach [17–19, 30, 38, 40] turbulence-transport
equations are solved on the fine grid only, and turbulence variables are simply injected onto
coarser grids.

2. Fully coupled MG with stabilization fixes (FCSF–MG): In this approach [20, 33, 35–37, 39],
[41–43, 46, 49, 50] turbulence-transport equations are solved on all grids using FAS [29]
or NLMG [56], but several stabilization techniques are used to avoid divergence of the
computations, e.g. source terms restriction (STR: the meanflow gradients appearing in the
turbulence source terms are computed on the fine grid only, and then restricted onto coarser
grids [35, 37, 39, 41–43, 49]), residuals damping (RD: the turbulence-variables residuals
are damped by an underrelaxation coefficient in the MG restriction and/or prolongation
phase [20, 33, 35, 36, 46, 50]) and specific positivity preserving prolongation fixes (PPP: for
physically unconditionally positive variables, only positive increments are permitted in the
prolongation from coarser to finer grids, thus guaranteeing that MG does not induce loss of
positivity [20, 33, 35, 36, 39, 46, 50]).

3. Linear multigrid (LMG): In this approach [44, 45] MG is applied to the iterative technique
used to solve the linear system resulting from the implicit time discretization of the equa-
tions [56] (this was also termed Newton MG iteration by Hackbusch [56]), and as such can
be applied to turbulence transport without any particular stabilization fix.
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Linear multigrid (LMG) can be efficient provided the solution of the linear system corresponds
to a large percentage of CPU usage for the SG algorithm [76]. MF–MG is very simple to imple-
ment, and indeed particularly robust. Nonetheless it is generally accepted [20, 36, 37, 41, 42, 49]
that higher CPU-speed-ups can be obtained using fully coupled MG with stabilization fixes
(FCSF–MG). Gerlinger and Brüggemann [42], using a 2-equation model [62], have compared
CPU-speed-ups obtained by a V(2,0) FAS–FCSF–MG strategy, with those obtained usingMF–MG,
on a (M∞=4, �c=10◦) compression ramp, and found that, for the density residual, FCSF–MG was
faster by a factor of 2.25. Nonetheless, in these computations of Gerlinger and Brüggemann [42],
virtually no CPU-speed-up was obtained by MF–MG for the

√
k-residual. On the other hand, the

present authors [17, 18], using MF–MG, have observed similar CPU-speed-ups in the convergence
of the meanflow and of the turbulence variables.

Although FCSF–MG is expected to further enhance convergence acceleration compared with
MF–MG, in the present work we focus on the systematic evaluation of MF–MG, applied to RSM–
RANS, for a wide range of flows. In a recent work, the authors [17] have developed an MF–MG
technique for RSM–RANS. The method, which uses full approximation MG (FAS–MG), applies
successively the subiterative procedure of the basic SG scheme [14, 15] on each grid, using a
V(1,0)-cycle (sawtooth cycle) [74, 77]. The restriction (transfer) and prolongation (interpolation)
operators are based on the characteristic MG approach of Leclercq and Stoufflet [78], which
maintains the upwind character of the scheme and ensures stability of the multigrid algorithm.
The method [17] has been applied to several 2-D and 3-D flows, including shock wave/turbulent
boundary layer interactions (SWTBLI) [17, 18, 79–81], flows with large separation [17, 82], and
multistage transonic turbomachinery flows [18], and has consistently given CPU-speed-ups in the
range rCPUSUP∈[3,4].

The purpose of this paper is:

1. to further explore the convergence acceleration possibilities of the MF–MG algorithm [17] for
complex 3-D flows, including flows driven by turbulence anisotropy, to determine whether the
method still offers significant speed-ups, even when the convergence of meanflow variables
is subordinated to the convergence of the turbulence variables,

2. to evaluate alternative MG strategies, and in particular potentially time-consistent algorithms
(acceleration of the subiterative convergence) that could also be used for the DTS time
integration of unsteady flow problems,

3. to substantiate the conjecture that the present MF–MG algorithms, whose implementation is
turbulence-model-independent, achieve comparable CPU–speed-ups whatever the particular
turbulence closure used.

After a brief description of the system of equations and of the turbulence model (Section 2),
we briefly summarize (Section 3) the standard [17] non-time-consistent FAS–MF–MG algorithm
(steady; s–MG), using iteration operators as building-blocks (cf. Appendix A), and assess its
performance for (1) developing quasi-incompressible turbulent flow in a 3-D square duct (MCLi =
0.0516), studied experimentally by Gessner and Emery [83], and (2) transonic (MSW∈[1.3,1.8])
3-D SWTBLI in a rectangular nozzle with a swept bump on the lower wall [84, 85].

Then (Section 4), we assess potentially time-consistent algorithms for the acceleration of the
subiterative convergence (unsteady; u–MG), for a 2-D compression ramp (MSW=2.85, �c=
�ϑSW=24deg, Re�0=8×104) studied experimentally by Settles et al. [86], Dolling and Murphy
[87], Settles and Dodson [88].
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Computations for the various configurations were run at the experimental conditions [24, 25],
[79, 80], and with quite fine computational grids (Table IV) especially for the 3-D test cases.
The possibility of using computational grids, which are sufficiently fine to achieve grid-converged
results in complex 3-D configurations is one of the major advantages expected from the develop-
ment of computationally efficient MG techniques. For the 2-D test case we have systematically
run computations using 2 wall normal free WNF–RSMs (the V RSM [82] and the WNF–LSS
RSM [25]), and a low turbulence Reynolds number baseline k−ε model [57]. For the 3-D test
cases, because of the high CPU times required, especially for the SG computations, CPU-speed-ups
were assessed for the V RSM [82] closure only.

2. RSM–RANS SYSTEM OF EQUATIONS

2.1. Meanflow equations

The flow is modelled by the compressible Favre–Reynolds-averaged 3-D Navier–Stokes equa-
tions [10, 24]

��̄

�t
+ ��̄ũ�

�x�

=0 (1a)

��̄ũi
�t
+ �

�x�

[�̄ũi ũ�+ p̄�i�]− �
�x�

[�̄i�−�u′′i u′′� ]=0 (1b)

�
�t
[�̄h̆t− p̄]+ ��̄ũ�h̆t

�x�

− �
�x�

[ũi (�̄i�−�u′′i u′′�)−(q̄�+�h′′u′′�)]= Sh̆t (1c)

where t is the time, x� are the Cartesian space coordinates, ui are the velocity components, �
is the density, p is the pressure, �i j is the Kronecker symbol, ˜(·) denotes Favre averaging, ¯(·)
denotes non-weighted averaging, (·)′′ are Favre fluctuations, (·)′ are non-weighted fluctuations,

h̆t= h̃+ 1
2 ũi ũi is the total enthalpy of the mean flow, h is the specific enthalpy, −�u′′i u′′j≡−�̄˜u′′i u′′j

are the Reynolds stresses, k= 1
2

˜u′′i u′′i is the turbulence kinetic energy (TKE), �i j are the viscous

stresses, q� is the molecular heat flux, �h′′u′′�≡ �̄˜h′′u′′� is the turbulent heat flux, and Sh̆t is a source
term appearing in the meanflow energy equation [10, 24]. The symbol (·̆) is used to denote a
function of average quantities that is neither a Favre-average nor a non-weighted average. The
source term appearing in the meanflow energy equation is obtained by combining the averaged
energy equation with the transport equation for the TKE, and reads [10, 89, 90].

Sh̆t=
[
�k−Pk+ �̄ε

(�)
k +u′′i

� p̄
�xi
+ �̄i�

�u′′i
�x�

]
(2)

where �k= 1
2��� is the velocity–pressure gradient correlation in the TKE transport equation (�i j=

u′i�x j p′+u′j�xi p′), Pk= 1
2 P�� is the TKE production, and ε

(�)
k = 1

2ε
(�)
�� is the TKE dissipation rate.
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2.2. Reynolds stress transport

The transport equations for the Favre–Reynolds averaged Reynolds stresses are [89, 91]

��u′′i u′′j
�t
+ �

�x�

(�u′′i u′′j ũ�)︸ ︷︷ ︸
convection Ci j

= �
�x�

⎛⎝−�u′′i u′′j u′′�− p′u′j�i�− p′u′i� j�+�
�u′i u′j
�x�

⎞⎠
︸ ︷︷ ︸

diffusion di j=d(u)
i j +d(p)

i j +d(�)
i j

+ p′
(

�u′i
�x j
+ �u′j

�xi
− 2

3

�u′k
�xk

�i j

)
︸ ︷︷ ︸

redistribution �i j

+
(
−�u′′i u′′�

�ũ j

�x�

−�u′′j u′′�
�ũi
�x�

)
︸ ︷︷ ︸

production Pi j

+ 2

3
p′

�u′k
�xk

�i j︸ ︷︷ ︸
pressure-dilatation 2

3�p�i j

+
(
−u′′i

� p̄
�x j
−u′′j

� p̄
�xi
+u′′i

��̄ j�

�x�

+u′′j
��̄i�
�x�

)
︸ ︷︷ ︸

density fluctuation effects Ki j

−
⎛⎝ �

�x�

[��u′i u′j
�x�

]−(u′i
��′j�
�x�

+u′j
��′i�
�x�

)

⎞⎠
︸ ︷︷ ︸

dissipation �̄ε
(�)
i j

(3)

This form, where a nearly exact term for the viscous diffusion of the Reynolds stresses (d(�)

i j ) is

used, instead of the original term (d(�)
i j ), is the form that is actually modelled [92]. Convection Ci j

and production Pi j are exact terms, while all the other terms (d(�)

i j , d(u)
i j , d(p)

i j , �i j , �p, Ki j , and

ε
(�)

i j ) require modelling.
These equations were closed using WNF RSMs, i.e. SMC which are completely independent

of wall topology (distance-from-the-wall vector) [25]. The homogeneous part of the redistribution
tensor �i j is modelled [24, 25, 82] by an isotropization-of-production/return-to-isotropy (IPRI)
closure, while the strongly inhomogeneous near-wall part is modelled by aWNF approach [25]. The
turbulence scale is determined by solving a transport equation for the modified [57] TKE dissipation
rate ε∗. The details on the development of the models have been reported elsewhere [24–26, 81, 82]
and are beyond the scope of the present paper.

2.3. Numerical model

In summary the flow is modelled by a system of 12 nonlinear evolution equations [24–26, 81, 82, 93]
�u
�t
+ �F �

�x�

+S=0 (4)

where u∈R12 is the vector of unknowns (conservative variables), which is split in a vector
of meanflow variables uMF∈R5, and a vector of turbulence variables (Reynolds stresses and

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:185–219
DOI: 10.1002/fld



194 G. A. GEROLYMOS AND I. VALLET

dissipation rate) uRSM∈R7

u = [uTMF,u
T
RSM]T

= [[�̄, �̄ũ, �̄ṽ, �̄w̃, �̄h̆t− p̄]; [�u′′u′′,�u′′v′′,�v′′v′′,�v′′w′′,�w′′w′′,�w′′u′′, �̄ε∗]]T (5)

The fluxes F �∈R12 (Fx , Fy , Fz) are the combined convective (FC
� ) and diffusive (viscous; FV

� )
fluxes

F �=FC
�+FV

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̄ũ�

�̄ũ�ũ+ p̄�x�
�̄ũ�ṽ+ p̄�y�
�̄ũ�w̃+ p̄�z�

�̄ũ�h̆t

ũ��u′′u′′

ũ��u′′v′′

ũ��v′′v′′

ũ��v′′w′′

ũ��w′′w′′

ũ��w′′u′′
�̄ũ�ε

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

�u′′�u′′− �̄�x

�u′′�v′′− �̄�y

�u′′�w′′− �̄�z

ũi (�u′′i u′′�− �̄i�)+(q̄�+�h′′u′′�)
−Dxx�

−Dxy�

−Dyy�

−Dyz�

−Dzz�

−Dzx�

−Dε�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where Di jk denote the modelled form of the diffusion terms [82] in the Reynolds stress transport
(Equations (3)) and Dεi denotes the ε diffusion flux [24]. The source terms vector S∈R12

S=−[0,0,0,0, Sh̆t, Suu, Suv, Svv, Svw, Sww, Swu, Sε]T (7)

contains the source terms of the turbulence model (Sui u j and Sε), and the modelled form of the
energy equation source term Sh̆t (Equation (2)).

The working medium thermodynamics are approximated by a thermodynamically and calor-
ically perfect gas ( p̄= �̄RgT̃ and cp=	Rg/[	−1]). All computations were run for air (Rg=
287.04m2 s−2K−1,	=1.4) and used a Sutherland law dependence for viscosity and a corrected
Sutherland law for heat conductivity [93, p. 200, Equations (5)].

Notice that, contrary to the above practice (which is in quite general use, and has been followed in
the present paper), the Reynolds stresses in the mean-momentum equations, and the term ũi�u′′i u′′�
in the energy equation, should have been included in the convective part of Equations [94], because
they are order-1 derivatives.

3. BASIC MG ALGORITHM

3.1. Meanflow–Multigrid

MG is applied on meanflow variables only, while turbulence variables are simply injected on coarser
grids, and are only updated on the fine grid (no MG residuals for the turbulence variables). The
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prolongation and restriction operators are based on characteristic MG [78]. The restriction (transfer)
operator from the fine to the coarse grid, for the variables, T2h

u;h, is a simple injection operator.

The restriction (transfer) operator from the fine to the coarse grid, for the residuals, T2h
R;h, is a

weighted operator respecting the direction of propagation of information along characteristics [78].
The prolongation (interpolation) operator, which is applied only to uMF, is a simple geometric
interpolation operator [78]. The coarse grid scheme is applied on uMF only, with frozen turbulence.
Full details concerning the restriction and interpolation operators, on structured grids, are given in
Gerolymos and Vallet [17]. The MG algorithms are defined using basic operators related to the
SG scheme, which is described for completeness in Appendix A.

3.2. s-V (NV1,0) sawtooth MG cycle

The steady s–MG algorithm [17] is a standard non-time-consistent FAS method, based on a
V(NV1,0)-cycle (sawtooth cycle), with appropriate forcing terms [74, 77]. Let Gh, G2h, G4h denote
the fine and successively coarser grids. The full-iteration operator N (Equations (A10), (A11)),
and the full-iteration frozen-turbulence operator NMF (Equations (A15), (A16)), can be defined on
each grid in the MG sequence, Gh (Nh, NMFh), G2h (N2h, NMF2h), and G4h (N4h, NMF4h). These
operators correspond to Kit iterations (time steps), with each time step containing Mit subiterations
(usually determined dynamically by a target convergence-tolerance rTRG criterion), and are defined
by the non-dimensional physical time step CFL and the non-dimensional dual time step CFL∗,
and advance the solution from a given value 0u to a new value N(0u,CFL,CFL∗,F;rTRG,Kit),
where F is the MG forcing term [74, 58], which is 0 on the fine grid. With these definitions,
the MG algorithm, for three levels of MG (LGRD=3), and for a dynamic subiterative strategy,
reads

iteration n

compute on Gh : 0qh=nu;Fh=0;qh=Nh(
0qh,CFL,CFL∗,Fh;rTRG,1)

transfer to G2h :
{0q2h=T2h

u;h[qh]
FMF2h=T2h

R;h[LMFh(qh)]−LMF2h(
0q2h)

compute on G2h :
{
qMF2h=NMF2h(

0q2h,CFL,CFL∗,FMF2h;rTRG,NV1)

qRSM2h=0qRSM2h=T2h
u;h[qRSMh]

transfer to G4h :
{0q4h=T4h

u;2h[q2h]
FMF4h=T4h

R;2h[LMF2h(q2h)+FMF2h]−LMF4h(
0q4h)

compute on G4h :
⎧⎨⎩
qMF4h=NMF4h(

0q4h,CFL,CFL∗,FMF4h;rTRG,NV1)

qRSM4h=0qRSM4h=T4h
u;2h[qRSM2h]=T4h

u;2hTu;h2h[qRSMh]

interpolation : n+1u=Bh{qh+ Ih2h[q2h−0q2h]+ Ih2hI
2h
4h[q4h−0q4h]}

(8)

In these relations 0q, q, and F are internal variables, and were not superscripted by the iteration
counter. The variables 0qh, 0q2h, and 0q4h, are initial values, at the beginning of the computation
on the corresponding grid (they are obtained by transfer from the immediately finer grid). The
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variables qh, q2h, and q4h are final values, obtained on the corresponding grid from the application
of one full iteration N on the fine grid (qh), and of NV1 meanflow iterations NMF on the coarser grids
(q2h and q4h). The quantities Fh≡0, FMF2h , and FMF4h are the forcing terms on the corresponding
grids, ensuring that the procedure is driven by the fine-grid residuals, to obtain MG results identical
with fine-grid SG computations [58, 74, 77].

For a higher number of grids the G4h step would be repeated on G8h. Nonetheless only compu-
tations with three levels of MG (h, 2h, 4h) will be presented in the following. Tests with four levels
of MG, using the present method of characteristic MG and a V-cycle (sawtooth cycle), exhibit
stability problems, even in the case of simple subsonic flows. It is believed that this instability is
in no way related to turbulence modelling. This conjecture is substantiated, e.g. by the fact that
solution breakdown with LGRD=4, for the Settles et al. [86] Settles and Dodson [88] MSW=2.85
oblique shock wave/boundary layer interaction (OSWTBLI) test case (cf. Section 4.4), occurs
well outside the boundary layer, near the shock wave, in the essentially inviscid flow region.
This breakdown occurs quite rapidly, even when the LGRD=4 computations are initialized using
fully converged LGRD=3 computations. Theoretical work on characteristic MG with 4 grid-levels
(LGRD=4) is required to further analyse this problem. The original work of Leclercq and Stouf-
flet [78] was limited to a 2-grid analysis, of the 1-D advection equation, with Runge–Kutta (RK)
time integration. It concluded that the best results were obtained when one of the operators for
the residuals (either prolongation or restriction) was upwind and the other one centered. How
these results apply to a 4-grid analysis of the 2-D advection equation is the subject of on-going
work.

3.3. Application to 3-D developing anisotropy-driven turbulent flow

The major drawback of the present MF–MG technique is that MG acceleration is not applied on
the turbulence variables uRSM (Equation (5)). Several authors [20, 34, 36, 41–43, 49] argue that this
will significantly reduce the computational speed-up, because the pace will be set by the slowly
convergent uRSM. As noted in the Introduction (Section 1), Gerlinger and Brüggemann [42] have
quantified this reduction in CPU-speed-up, showing that FCSF–MG can be faster by a factor of 2
compared with MF–MG.

To further investigate this issue, we study developing 3-D turbulent flow in a square duct,
investigated experimentally by Gessner and Emery [83]. The experimental configuration [83, 95]
consists of a square duct, with quasi-incompressible (inlet Mach number at centerline MCLi =
0.0516) developing turbulent flow at bulk Reynolds number ReB=250000 (ReB= ūBDh 
̆

−1,
where ūB is the bulk velocity, Dh=2a is the hydraulic diameter of the duct and 
̆ is the kinematic
viscosity). Preliminary tests showed that very fine grids were needed to obtain grid-converged
results. Computations were run on a 18×106 points grid (Table IV), discretizing 1

4 of the duct,
with symmetry conditions at the y- and z-wise symmetry planes [82]. The inflow boundary layer
thickness was adjusted (Figure 1) to obtain a close fit to the experimental centerline velocity in
the entrance region (x ∈[0,10Dh]).

This flow is dominated by anisotropy-driven secondary-flows, and as such is a stringent test
case as far as MF–MG is concerned. The sensitivity of the results on the turbulence model
used, for this particular test case, has been highlighted by several previous studies on turbulence
modelling [25, 82, 95]. These studies have not only confirmed the inadequacy of closures using
the Boussinesq assumption, but have also highlighted the importance of both redistribution (�i j ;

Equations (3)) and turbulence diffusion (d(u)
i j +d(p)

i j ; Equations (3)) for the correct prediction of
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Figure 1. Comparison, for [CFL,CFL∗;Mit,rTRG]=[500,50;−,−1.5], of various multigrid techniques,
using 3 levels of multigrid (MG3), with the single-grid algorithm SG, for the convergence of mean-
flow error eMF and of maximum centerline velocity [ūCL]max (x/Dh=40; y= z=a), vs the number
of iterations nit (multigrid-cycles) and vs CPU-time (for 3.7Gflops−1 sustained performance), using
the Vallet [82] RSM, for developing turbulent flow in a square duct [83] (ReB=250000; Tui =1%;
�Ti =50mm; �yi =�zi =0.1mm; �y+w =�z+w < 1

2 ; 18×106 points grid discretizing 1
4 of the square duct;

Table IV; comparison of computed and measured [83] centerline velocity ūCL).

such global flow features as the duct-centerline velocity ūCL, which is a direct measure of the
blockage of the boundary layers on the duct walls and duct corners. This sensitivity of the results on
the predicted uRSM (Equation (5)) suggests that any convergence delay of the turbulence variables
should have a significant impact on the overall convergence of the flow. Computations were
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run with a dynamic subiterative strategy ([CFL,CFL∗;Mit,rTRG]=[500,50;−,−1.5]), using the
V RSM [82]. CPU-speed-ups were assessed (Figure 1) by comparing SG and MG3 computations,
both s-MG3-V(1,0) and s-MG3-V(2,0).

Consideration of the reduction of meanflow error eMF relative to its value at nit=1 (eMF1)
illustrates the CPU-speed-ups of the MG procedures (Figure 1). As for the Délery 3-D test case
(Section 3.4), an alternative criterion was used to evaluate CPU-speed-ups, based on the conver-
gence of a difficult (slowly convergent) flow feature. The Gessner and Emery [83] configuration is
dominated by the developing 3-D turbulent boundary layers entrainment, and associated blockage.
The peak in the centerline-velocity distribution at x∼=40Dh (Figure 1) is a slowly convergent flow
feature, and its correct prediction is an indicator of turbulence model performance. This quantity
([ūCL]max) was chosen to evaluate CPU-speed-ups (Figure 1). Convergence for [ūCL]max with the
s-MG3- V(1,0) strategy is reached within ∼340CPU−h (Figure 1). The s-MG3-V(2,0) computa-
tions converge in ∼380CPU−h (Figure 1), for [ūCL]max, while the residuals plots suggest a faster
convergence using s-MG3-V(2,0) compared with s-MG3–V(1,0). The SG computations reach a
similar level of convergence as the s-MG3 strategies in ∼1160CPU−h. MG CPU-speed-ups are
(Table V)3.4 for s-MG3-V(1,0) and 3.1 for s-MG3-V(2,0).

Notice that for this configuration, CPU-speed-ups are in general lower than those obtained
for the previous test cases, presumably because MF–MG does not handle efficiently this flow,
which is dominated by turbulence anisotropy. Nonetheless, CPU-speed-ups are quite substantial,
especially taking into account the very large SG CPU-time. Notice also that, despite the absence
of low Mach number preconditioning, the method performs quite well for this low Mach number
(MCLi =0.0516) flow.

Comparison of computed results with measurements [83], along the corner-bisector (Figure 2),
demonstrate that the s-MG3 computations give identical results with the SG calculations, both
for the mean-velocities and for the Reynolds stresses, in good agreement with measurements
(Figure 2).

3.4. Application to 3-D transonic flow

To substantiate the performance of the MF–MG algorithm for 3-D compressible flows with large
separation, computations were run for the Délery 3-D transonic nozzle [84, 85, 96], which is a
rectangular nozzle with plane parallel sidewalls, where a swept bump fitted on the lower wall
induces a 3-D SWTBLI (MSW∈[1.3,1.8]). A large 3-D separation region is observed in the
neighbourhood of the corner between the lower wall and the near wall (z=106.3mm), where the
shock wave is strongest (Figure 3). The adjustable throat at the nozzle exit (Figure 3), which serves
to generate and position the shock wave, is located relatively near the trailing edge of the swept
bump, and strongly influences the separation and reattachment process [10, 24]. Furthermore, it is
not improbable that technological details of the experimental set-up, and possible leakage at the
exit throat, also influence the flow (the adjustable exit throat is included in the computed geometry,
but not the technological/leakage effects). Previous computations of this configuration [10, 24]
with various turbulence closures have shown the improvements in predicting this complex flow
using SMCs.

Computations were run with a static subiterative strategy ([CFL,CFL∗;Mit,rTRG]=[100,10;
4,−]), using the V RSM [82], on a grid of 19×106 points (Table IV), which is quite finer than
the grids used in the literature for this configuration [10, 24, 96]. CPU-speed-ups were assessed
(Figure 3) by comparing SG and MG3 computations, both s-MG3-V(1,0) and s-MG3-V(2,0).
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Figure 2. Comparison, for [CFL,CFL∗;Mit,rTRG]=[500,50;−,−1.5], of results using the
Vallet [82] RSM and 3 levels of multigrid (MG3), with the single-grid algorithm SG, and with
measurements [83] along the corner-bisector (yd ), for developing turbulent flow in a square
duct [83] (ReB=250000; Tui =1%; �Ti =50mm; �yi =�zi =0.1mm; �y+w =�z+w< 1

2 ; 18×106
points grid discretizing 1

4 of the square duct; Table IV).

Consideration of the reduction of meanflow error eMF relative to its value at nit=1 (eMF1) illustrates
the CPU-speed-ups of the MG procedures (Figure 3). If saturation of residuals were used as
the criterion for evaluating the CPU-speed-ups, it would have been necessary to further continue
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Figure 3. Comparison, for [CFL,CFL∗;Mit,rTRG]=[100,10;4,−], of various multigrid techniques, using 3
levels of multigrid (MG3), with the single-grid algorithm SG, for the convergence of meanflow error
eMF and of the isentropic-wall-Mach-number plateau level [M̆is]PLATEAU, vs the number of iterations nit
(multigrid-cycles) and vs CPU-time ( for 3.7Gflops−1 sustained performance), using the V [82] RSM,
for 3-D shock-wave/turbulent-boundary-layer-interaction in a rectangular nozzle [85] (MSW∈[1.3,1.8];
Re�×10−6∈[2.2,3.3]; Tui =5%; �Ti =50mm; �yi =�zi =0mm; �y+w =�z+w< 3

4 ; 19×106 points grid;
Table IV; comparison of computed and measured [85] wall pressures on the lower wall; M̆is at various

locations and M̆is contours on the lower wall).
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the computations (especially SG). To avoid this, an alternative criterion was used, based on the
convergence of a difficult (slowly convergent) flow feature. The flowfield contains both supersonic
attached regions which converge very fast, and the separation region where convergence is much
slower. This is especially the case in the large separation zone observed near the corner between
the lower wall and the near wall (z=106.3mm), where the shock wave is strongest (Figure 3).
Previous computational experience with this configuration suggests [10, 24] that the associated
pressure plateau present in the M̆is (isentropic wall Mach number [10]) distribution at z=106.3mm
converges slowly, because the associated recirculation is strongly influenced by overall separation
and blockage. Using [M̆is]PLATEAU to monitor convergence highlights MG speed-up (Figure 3,
Table V). For the s-MG3–V(1,0) strategy the CPU-speed-up is ∼3.7, and increases to ∼5.5 for
the s-MG3-V(2,0) strategy (Figure 3, Table V).

4. ALTERNATIVE MG ALGORITHMS

4.1. Alternative strategies

The above studies (Section 3) confirm previous results [17, 18] on the satisfactory performance
of MF–MG with the standard FAS algorithm, even for the difficult case of low Mach number
anisotropy-driven turbulent flow (Section 3.3). The s–MG algorithm, with a V(2,0) cycle gives
speed-ups rCPUSUP∈[3,5] for a wide range of complex flows (Section 3). The steady s–MG
algorithm uses the baseline single-grid SG algorithm, with the subiterative procedure applied
successively on each coarser grid. Alternatively, MG acceleration can be applied at the subiteration
level, i.e. with the MG sequence visited at each subiteration. This approach, aiming at the accel-
eration of the subiterative convergence of the increment, can be made time-consistent, although,
in the present work, we are only interested in steady flows. We have studied two alternative MG
algorithms:

1. unsteady u–MG: MG acceleration of the subiterative procedure, which can be made time-
consistent for unsteady flows computation (in the present work it is used with local-time
steps for steady flows),

2. u′–MG: non-time-consistent variant of u–MG, potentially more efficient for steady flows.

These algorithms are applied (Section 4.4) to the computation of 2-D oblique-shock
wave/turbulent boundary layer separated flow interaction (OSWTBLI) on a MSW=2.85 compres-
sion ramp [86–88], and are also compared with the s–MG algorithm (Section 3).

The u–MG and u′–MG algorithms are defined using the subiteration operator S (Equation (A3)),
and the corresponding frozen-turbulence subiteration operator SMF (Equation (A12)) which can be
defined on each grid in the MG sequence, Gh (Sh and SMFh), G2h (S2h and SMF2h), and G4h (S4h
and SMF4h). These operators correspond to one subiteration and are defined by the physical time
step �t and the dual pseudo-time step �t∗. They advance the subiterative solution from m,n+1u to
a new value m+1,n+1u=S(m,n+1u,nu,�t,�t∗,F), where F is the MG forcing term [74, 58], which
is 0 on the fine grid.

4.2. Potentially time-consistent u-V(1,0) sawtooth MG cycle

In this approach, MG is applied to accelerate the subiterative procedure, which aims at solving
the nonlinear system of the discretized equations R(n+1u,nu,�t)=0 (Equation (A5)). At each
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subiteration mit, the solution is advanced on the fine grid using operator S (Equation (A3)), and the
result is transferred on the coarse grid, where a meanflow subiteration is performed by applying
operator SMF (Equation (A12)). The forcing term FMF2h is based on the meanflow residual RMF
(Equation (A14)). The procedure is repeated on G4h and increments are interpolated in the fine
grid Gh, completing subiteration mit. Obviously, this procedure is expected to be efficient only
for a subiterative strategy where the number of subiterations is chosen dynamically, based on
an increment-convergence-tolerance criterion (rTRG). The building block of this cycle is a MG-
subiteration operator S(u)

MG, using a V(1,0) sawtooth cycle, defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

subiteration (mit,nit)=(m+1,n+1)
nuh=nu;nu2h=T2h

u;h[nuh];nu4h=T4h
u;2h[nu2h]

compute on Gh : 0qh=m,n+1u;Fh=0;qh=Sh(
0qh,nuh,�th,�t∗h,Fh)

transfer to G2h :

⎧⎪⎪⎨⎪⎪⎩
0q2h=T2h

u;h[qh]
FMF2h=T2h

R;h[RMFh(qMFh,
nuh,�th)]

−RMF2h(
0qMF2h,

nu2h,�t2h)

compute on G2h :
{
qMF2h=SMF2h(

0qMF2h,
nu2h,�t2h,�t∗2h,F2h)

qRSM2h=0qRSM2h=T2h
u;h[qRSMh]

transfer to G4h :

⎧⎪⎪⎨⎪⎪⎩
0q4h=T4h

u;2h[q2h]
FMF4h=T4h

R;2h[RMF2h(qMF2h,
nu2h,�t2h)+F2h]

−RMF4h(
0qMF4h,

nu4h,�t4h)

compute on G4h :
{
qMF4h=SMF4h(

0qMF4h,
nu4h,�t4h,�t∗4h,FMF4h)

qRSM4h=0qRSM4h=T4h
u;2h[qRSM2h]=T4h

u;2hTu;h2h[qRSMh]
interpolation : m+1,n+1u=Bh{qh+ Ih2h[q2h−0q2h]+ Ih2hI

2h
4h[q4h−0q4h]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇐⇒m+1,n+1u=S(u)

MG(m,n+1u,nu,CFL,CFL∗, LGRD) (9)

Using the operator S(u)
MG (Equation (9)), the u–MG algorithm, with a dynamic subiterative strategy,

reads

do nit=1,Nit,1;n=nit−1;0,n+1u=nu

do mit while [rMF�rTRG];m=mit−1;Mit=mit

m+1,n+1u=S(u)
MG(m,n+1u,nu,CFL,CFL∗, LGRD)

end do;n+1u=Mit,n+1u; end do

(10)
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The advantage of this procedure is that it can be made time-consistent (by using an homogeneous
�t , and eventually an O(�t2) discretization) and used for unsteady flows [97]. When applied
to steady flows, with local-time steps �t, its major drawback is that the rather costly evaluation
of RMFh (Equation (A12)) is performed at every subiteration, contrary to the s–MG algorithm
where this evaluation is done at the end of the fine grid subiterative procedure (operator Nh).
For this reason, the u–MG procedure is not very efficient when a strategy with a small fixed
number of subiterations per iteration Mit is used. To improve the performance of u–MG, a modified
non-time-consistent variant (u′–MG) was developed.

4.3. u′-V(1,0) sawtooth MG cycle

Since this procedure is interested in the convergence acceleration of steady flows only, it is not
designed for the acceleration of the subiterative solution of R(n+1u,nu,�t)=0 (Equation (A12)),
but rather of L(n+1u)=0 (Equation (A1)), this being the ultimate goal of TM to the steady
state. To this purpose, forcing terms FMF2h , FMF4h (Equations (11)) are based, contrary to u–MG
(Equations (9)), on LMF instead of RMF, as in the s–MG algorithm (Equations (8)). Furthermore,
the initial state for evaluating the residual in SMF2h and SMF4h is computed using the transferred
results from the immediately coarser grid q2h, q4h (instead of the transferred iteration n variables
nu2h, nu4h used in u–MG). This choice is equivalent to cancelling the time derivative in the coarse-
grid subiteration operator SMF (Equation (A12)). These non-time-consistent modifications are all
motivated by the fact that quasi-time-consistency is expected to slow down the iterative procedure.
Notice that both u′–MG and u–MG have the same limit as �t−→∞, i.e. for a quasi-Newton

iterative procedure [17, 18] The building block of this cycle is a MG-subiteration operator S(u′)
MG,

using a V(1,0) sawtooth cycle, defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

subiteration (mit,nit)=(m+1,n+1)
compute on Gh : 0qh=m,n+1u;Fh=0;qh=Sh(

0qh,nuh,�th,�t∗h,Fh)

transfer to G2h :
{0q2h=T2h

u;h[qh]
FMF2h=T2h

R;h[LMFh(qh)]−LMF2h(
0q2h)

compute on G2h :
{
qMF2h=SMF2h(

0qMF2h,
0q2h,�t2h,�t∗2h,F2h)

qRSM2h=0qRSM2h=T2h
u;h[qRSMh]

transfer to G4h :
{0q4h=T4h

u;2h[q2h]
FMF4h=T4h

R;2h[LMF2h(q2h)+F2h]−LMF4h(
0q4h)

compute on G4h :
{
qMF4h=SMF4h(

0qMF4h,
0q4h,�t4h,�t∗4h,FMF4h)

qRSM4h=0qRSM4h=T4h
u;2h[qRSM2h]=T4h

u;2hTu;h2h[qRSMh]
interpolation : m+1,n+1u=Bh{qh+ Ih2h[q2h−0q2h]+ Ih2hI

2h
4h[q4h−0q4h]}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇐⇒m+1,n+1u=S(u′)

MG(m,n+1u,nu,CFL,CFL∗, LGRD) (11)
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Using the operator S(u′)
MG (Equation (11)), the u′–MG algorithm reads

do nit=1,Nit,1;n=nit−1;0,n+1u=nu

do mit while [rMF�rTRG];m=mit−1;Mit=mit

m+1,n+1u=S(u′)
MG(m,n+1u,nu,CFL,CFL∗, LGRD)

end do;n+1u=Mit,n+1u;end do

(12)

4.4. Application to 2-D compression ramp

This configuration is an �c=24deg compression ramp in a M∞=2.85 stream [86, 88], and has been
used in assessing s–MG with a V(1,0) sawtooth cycle [17]. The OSWTBLI, which takes place at
the compression corner induces large separation of the incoming turbulent boundary layer [86, 88].
In a previous work [79, 80], the authors have conducted systematic grid-convergence and boundary-
condition studies using various turbulence closures [10, 24, 25, 57]. These studies indicate that the
401×201 computational grid used in the present work (Table IV) gives satisfactory near-grid-
converged results, and that the V RSM [82] (whose results, for this particular configuration are
very close to the GV RSM [24]) gives the best prediction of wall pressure p̄w, upstream-influence-
length, and separation position (Figure 4). Notice that the model predicts a marked pressure
plateau between the first and the second oblique shock waves of the �-structure (Figure 4), while
the measurements show a more gradual increase of p̄w. This is indicative of 3-D effects in the
measurements [81].

Computations were first run with a static subiterative strategy ([CFL,CFL∗;Mit,rTRG]=
[100,10;4,−]), using the V RSM [82], the WNF–LSS RSM [25] and the Launder–Sharma
k−ε [57] (Figure 4). Both SG computations, and computations with three levels of MG (MG3)
were run, using the three MG algorithms (Section 4), with a V(1,0) sawtooth cycle. For the s–MG
computations a V(2,0) sawtooth-cycle was also used.

Convergence plots of both meanflow (eMF) and turbulence (eRSM) variables indicate similar
trends (Figure 4). They both stall, after reduction of the initial error by ∼4 orders-of-magnitude
(Figure 4). This convergence stall occurs at similar levels both for the SG and MG computations
(Figure 4), and is attributed to either the slope limiters in the MUSCL reconstruction [98] or
to the AF–ADI factorization used in solving the linear system at each subiteration [99]. CPU-
speed-ups (Table V) with the fastest s-MG3-V(2,0) strategy, of 7.7, 5.4, and 4.6, are obtained for
the k−ε [57], WNF–LSS RSM [25], and V RSM [82], respectively. CPU-speed-ups are ∼1.4
times higher with the s-MG3-V(2,0) strategy, compared with the s-MG3-V(1,0) strategy, whatever
the turbulence closure used (Table V). The u–MG3–V(1,0) strategy yields poor CPU-speed-ups
(Figure 4, Table V). The simple modifications resulting to the u′–MG are particularly efficient,
in that the u′–MG3–V(1,0) strategy CPU-speed-ups are quite close to those of the s-MG3–V(1,0)
strategy (Figure 4, Table V).

The same computations were also run (Figure 5) with a dynamic subiterative strategy
([CFL,CFL∗;Mit,rTRG]=[∞,10;−,−1]; quasi-Newton). For SG computations, this dynamic
strategy is known to be more efficient than a static one [14, Figure 3, p. 771], because, as
convergence is approached, the number of subiterations required to reach rTRG is reduced. For
MG computations this is observed on every grid of the MG sequence [18, Figure 2, p. 1219].
Furthermore, only a dynamic subiterative strategy can take full advantage of the u–MG technique,

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:185–219
DOI: 10.1002/fld
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Figure 4. Comparison, for [CFL,CFL∗;Mit ,rTRG]=[100,10;4,−], of various multigrid techniques, using
3 levels of multigrid (MG3), with the single-grid algorithm (SG), for the convergence of meanflow error
eMF vs the number of iterations nit (multigrid-cycles) and vs CPU-time (CPU-minutes for 3Gflops−1
sustained performance), and of the turbulence-variables error eRSM vs CPU time, using the V [82] and
the WNF–LSS [25] RSMs, and the k−ε model [57] (M∞=2.85; �c=24deg; Re�0=1.33×106; Settles
et al. [86, 88] compression ramp; 401×201 grid; Table IV; comparison of computed and measured

wall-pressure s-wise distributions and Mach-contours computed with the V RSM).
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which is designed to accelerate subiterative convergence to rTRG, and hence to reduce Mit(nit).
As already noted, for the present quasi-Newton computations (�t−→∞), u–MG and u′–MG are
identical. As far as CPU-speed-ups are concerned (Figure 5, Table V), with this quasi-Newton
dynamic subiterative strategy, s-MG3–V(1,0) is only marginally better than u–MG3–V(1,0) or
u′–MG3–V(1,0), while s-MG3-V(2,0) is again the fastest technique. We have not tested, in the
present work u–MG3-V(2,0) or u′–MG3-V(2,0) strategies.

These computations (Figures 4, 5) indicate that CPU-speed-ups for the k−ε [57]model, obtained
by the s-MG3-V(2,0) technique, are ∼7, i.e. somewhat higher that those for the RSMs [24, 25],
which are 5± 1

2 (Table V), in agreement with the observations of Lien and Leschziner [20].
This may be explained by the fact that, for the k−ε [57] model, the Reynolds stresses adapt
directly to the meanflow gradients through the Boussinesq approximation, but also by the fact
that RSMs, especially the V RSM [82], predict much larger separation, in better agreement with
measurements [79], and hence a more complex flowfield.

These systematic comparisons suggest that s–MG is the most efficient technique, as far as
acceleration of convergence to steady state is concerned. For this reason, 3-D tests (Section 3)
were performed for s–MG only. Notice, however, that the interest of the u′–MG technique is that
it can be very easily coded as a particular case of the u–MG algorithm, and used as the steady
computations option of a u–MG-based unsteady flow solver.

5. CONCLUSIONS

The present study of meanflow–multigrid (MF–MG) strategies for the acceleration of the solution of
the 3-D compressible Navier–Stokes equations with near-wall wall normal free (WNF) 7-equation
second-moment closures [25] indicates that
1. MF–MG is capable of yielding substantial CPU-speed-ups, even for the most unfavourable

conditions, such as low Mach number anisotropy-driven developing turbulent flow in a square
duct [83] (rCPUSUP>3 using s-MG3-V(2,0) on a ∼18×106 points grid; Table V), or 3-D
SWTBLI (MSW∈[1.3,1.8] in a rectangular nozzle [84, 85] (rCPUSUP∼=51

2 using s-MG3-
V(2,0) on a ∼19×106 points grid; Table V).

2. Computations of 2-D OSWTBLI on a MSW=2.85 compression ramp [86, 88, �c=24deg],
using an alternative, potentially time-consistent, strategy, u–MG (aiming at the MG-
acceleration of the subiterative solution of the nonlinear system contained in the full-iteration
operator) show that this technique, applied to steady flows, is competitive to the standard
s–MG strategy (FAS–MG [29] based on the full-iteration operator), only if the subiterative
solution strategy is dynamic, i.e. only if the number of subiterations Mit is determined
dynamically at each iteration, based on a subiterative convergence tolerance criterion. In that
case, u–MG can reduce Mit necessary to reach subiterative convergence.

3. To improve upon u–MG applied to steady flows, we have also introduced a modified version,
u′–MG, which is not time-consistent, and approaches the speed-ups of s–MG (Table V).

4. In general, for steady flows, the s-MG3-V(2,0) strategy is the fastest, yielding rCPUSUP∈
[3,51

2 ] for the entire range of flows studied.

Although fully coupled MG with stabilization fixes (FCSF–MG) is expected to improve upon
the present MF–MG approach, the CPU-speed-ups obtained are quite satisfactory compared with
the current state-of-the-art of compressible RANS methods with 2-equation closures (Table III).
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Figure 5. Comparison, for [CFL,CFL∗;Mit ,rTRG]=[∞,10;−,−1], of various multigrid techniques, using
3 levels of multigrid (MG3), with the single-grid algorithm (SG), for the convergence of meanflow error
eMF vs the number of iterations nit (multigrid-cycles) and vs CPU-time (CPU-minutes for 3Gflops−1
sustained performance), and of the turbulence-variables error eRSM vs CPU time, using the V [82] and
the WNF–LSS [25] RSMs, and the k−ε model [57] (M∞=2.85; �c=24deg; Re�0=1.33×106; Settles
et al. [86, 88] compression ramp; 401×201 grid; Table IV; comparison of computed and measured

wall-pressure s-wise distributions and Mach-contours computed with the V RSM).
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Notice that, to the authors’ knowledge, there exist no other published CPU-speed-ups using MG
for cRANS with full 7-equation closures. The CPU-speed-ups obtained are quite useful when
considering systematic computations of 3-D complex turbulent flows on fine grids, for turbulence-
model development and validation studies. In that case, the very slow asymptotic convergence
of turbulence quantities, observed in SG computations, can lead to erroneous conclusions, and
MG computations are necessary for achieving full convergence, with reasonable CPU times.
Furthermore no modification of the MG algorithm is required when different turbulence closures
are implemented.

Future research will concentrate on

1. FCSF–MG which is expected to further improve CPU-speed-ups,
2. theoretical studies on characteristic MG to extend the applicability of the present methodology

to LGRD>3 levels of MG,
3. to the evaluation of u–MG for the computation of unsteady flows.

APPENDIX A: SINGLE-GRID SCHEME AND OPERATORS

A.1. Single-grid solver

The SG flow solver is described in detail by Chassaing et al. [14, 15], and is only briefly summa-
rized in the following. The numerical method presented is designed to be relatively independent
of the particular RSM closure used, and is also applicable to 2-equation closures [17]. The equa-
tions are discretized on structured multiblock grids using a finite-volume technique, with vertex
storage [100]. The divergence of convective fluxes is discretized using the flux-vector-splitting
method of Van Leer with O(�x3) MUSCL (MUSCL3) interpolation [101, 102]. In more recent
work [94] hybrid low-diffusion numerical fluxes (e.g. AUSM+, HLLC, Roe, etc.) have been imple-
mented, along with WENO reconstruction of the primitive variables [103]. The MG procedures
described in the present work are equally applicable with these more advanced numerical fluxes
and reconstruction procedures. The divergence of viscous fluxes is discretized using an O(�x2)
centered stencil [14]. For steady flows, an O(�t) backward-Euler fully implicit scheme is used,
which at iteration level n reads [14, 15, 101, 102]

n+1unD,i, j,k−nunD,i, j,k

�tnD,i, j,k
+n+1LnD,i, j,k

∼=0 ∀i, j,k ∀nD∈[1,ND]

⇐⇒
n+1u−nu

�t
+L(n+1u)∼=0 (A1)

where nD is the number of the structured block, ND is the number of blocks, �tnD,i, j,k is the time
step at grid point (nD, i, j,k), u=[uT1 ,uT2 , . . . ,uTNP

]T∈R12NP is the global vector of the unknowns

(NP is the total number of grid points), L=[LT
1 , LT

2 , . . . , LT
NP
]T∈R12NP is the global vector of the

space-operators, �t=diag[(�t1)I 12, (�t2)I 12, . . . , (�tNP)I 12]T∈R(12NP×12NP) (where I
12

denotes

the 12×12 identity matrix), and 1/�t :=�t−1.
The nonlinear system obtained from the above discretization (Equation (A1)) for the global

vector of unknowns u is solved using a subiterative approach, based on a local-dual-time-stepping
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LDTS procedure [14], inspired from the corresponding dual-time-stepping (DTS) approach [15]
which is widely used for time-consistent unsteady flow computations [104–107]

m+1,n+1u−m,n+1u
�t∗

+
m+1,n+1u−nu

�t
+L(m+1,n+1u)∼=0 (A2)

where �t∗=diag[(�t∗1 )I
12

, (�t∗2 )I
12

, . . . , (�t∗NP
)I

12
]T∈R(12NP×12NP) is the diagonal matrix of the

pseudo-time steps �t∗nD,i, j,k . Defining the subiteration operator S,

S(m,n+1u,nu,�t,�t∗,F)

=RBR

{
m,n+1u−

[
I+�t∗∗ �L

J

�u
(m,n+1u)

]−1
APPRX

�t∗∗[R(m,n+1u,nu,�t)+F]
}

(A3)

the corresponding iterative procedure, after linearization, reads [17]
do nit=1,Nit,1;n=nit−1;0,n+1u=nu

do mit while [rMF�rTRG];m=mit−1;Mit=mit

m+1,n+1u=S(m,n+1u,nu,�t,�t∗,F)

end do;n+1u=Mit,n+1u; end do

(A4)

where

R(m,n+1u,nu,�t)=
[m,n+1u−nu

�t
+L(m,n+1u)

]
(A5)

is the residual of the subiterative procedure, I∈R(12NP×12NP) is the identity matrix, �t∗∗ :=[I+
�t−1�t∗]−1�t∗, and F∈R12NP is a forcing source term, which serves only in the MG iteration,
and which is equal to zero for the single-grid scheme (F=0). In the definition of the operator
S(m,n+1u,nu,�t,�t∗,F), the variables [m,n+1u,nu] indicate the states used to compute the residual
R (Equation (A5)).

The Jacobian matrix �LJ/�u is an approximation to the exact Jacobian �L/�u, chosen so
as to minimize implicit work for multi-equation turbulence models [14]. The subscript APPRX
indicates that the matrix inversion (linear system solution) at each subiteration is approximate. The
particular approximations used in the present work [14, 17, 73] are described in Appendix B. To
ensure stability at high pseudo-time-steps (�t∗), boundary-conditions are applied implicitly [108],
by introducing appropriate modifications of the Jacobians �LJ/�u to conform with boundary
conditions [89]. The operator B(u) represents (Equation (A3)) the explicit application of boundary-
conditions. The operator R(u) (cf Section A.3) represents (Equation (A3)) the explicit application of
Reynolds-stress realizability constraints [10], to conform with Reynolds-stress realizability [109].
Both these operators are used in the construction of operator S (Equation (A3)).

The parameters controlling the numerical scheme (time-integration) are the CFL-numbers [14]
(CFL for the time-step, and CFL∗ for the dual pseudo-time-step, assuming that VNN=CFL and
VNN∗=CFL∗) and the number of subiterations performed at each iteration Mit(nit). This number
can be either fixed, or chosen dynamically, based on an increment-convergence-tolerance criterion.
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The relative variation of the meanflow eMF is given by the following error-L2-pseudonorm

eMF[uMF,�uMF]= log10

√√√√1

5

{∑[��̄]2∑[�̄]2 +
∑[�(�̄ũi )�(�̄ũi )]∑[�̄ũi �̄ũi ] +

∑[�(�̄h̆t− p̄)]2∑[�̄h̆t− p̄]2
}

(A6)

where
∑

implies summation over all grid-nodes, and the summation convention for the Cartesian
indices i, j=1,2,3 is used. This quantity (eMF) defines approximately the number of digits to
which the computation of the meanflow variables is converged. It is used to define the subiterative
convergence of the increment by the error reduction between subiterations [m,n+1] and [m+
1,n+1] (Equations (A3), (A4))

rMF(m+1,n+1)= log10
{
10[eMF(m+1,n+1)]−10[eMF(m,n+1)]

10[eMF(m,n+1)]

}
(A7)

eMF(m+1,n+1)≡eMF[nuMF,
m+1,n+1uMF−nuMF] (A8)

The reduction (rMF) indicates approximately the number of digits to which the increment is
converged during the subiterations. The time-integration scheme is therefore defined by the triplet
[CFL,CFL∗;Mit,rTRG] where either Mit or rTRG is specified.

A similar error-pseudonorm [14] is used to monitor the convergence of the turbulence variables

eRSM[uRSM,�uRSM]= log10

√√√√ 1
7

{∑[�(�u′′i u′′j )�(�u′′i u′′j )]∑[(�u′′i u′′j )(�u′′i u′′j )] +
∑[��̄ε∗]2∑[�̄ε∗]2

}
(A9)

A.2. Operators

Using the subiteration operator S (Equation (A3)), it is straightforward to write symbolically the
operator N which advances the solution for Kit full iterations. This operator can be defined either
with a fixed number of subiterations Mit (N[u,CFL,CFL∗,F;Mit,Kit]),⎧⎪⎪⎪⎨⎪⎪⎪⎩

do k=1,Kit,1;0,n+ku=n+k−1u
do mit=1,Mit,1;m=mit−1
m+1,n+ku=S(m,n+ku,n+k−1u,�t,�t∗,F)

end do;n+ku=Mit,n+ku; end do

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇐⇒n+Kitu=N(nu,CFL,CFL∗,F;Mit,Kit) (A10)

or with the number of subiterations determined dynamically to obtain a given level of error-
reduction of the increment rMF [14] (N[u,CFL,CFL∗,F;rTRG,Kit]⎧⎪⎪⎪⎨⎪⎪⎪⎩

do k=1,Kit,1;0,n+ku=n+k−1u
do mit while [rMF�rTRG];m=mit−1;Mit=mit
m+1,n+ku=S(m,n+ku,n+k−1u,�t,�t∗,F)

end do;n+ku=Mit,n+ku; end do

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇐⇒n+Kitu=N(nu,CFL,CFL∗,F;rTRG,Kit) (A11)

In both cases (Equations (A10), (A11)) the subiterations are initialized by 0,n+1u=nu.
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The MG algorithm is applied to the meanflow variables uMF only. To this purpose, it is useful
to define a meanflow subiteration operator SMF(

m,n+1uMF,
nu,�t,�t∗,FMF), analogous to the

subiteration operator S(m,n+1u,nu,�t,�t∗,F) (Equation (A3))

SMF(
m,n+1uMF,

nu,�t,�t∗,FMF)

=BMF

⎧⎨⎩m,n+1uMF−
[
I+�t∗∗

�LJ
MF

�uMF
(m,n+1u)

]−1
APPRX

�t∗∗[RMF(
m,n+1uMF,

nu)+FMF]
⎫⎬⎭
(A12)

whereLMF andLJ
MF are the meanflow-equations space-operator and the approximate space-operator

used for the Jacobians, and

m+1,n+1uRSM=m,n+1uRSM=nuRSM (A13)

RMF(
m,n+1uMF,

nu,�t)=
[m,n+1uMF−nuMF

�t
+LMF(

m,n+1u)

]
(A14)

Full-iteration meanflow-operators NMF
(
u,CFL,CFL∗,FMF;rTRG,Kit

)
and NMF(u,CFL,CFL∗,

FMF;Mit,Kit) are then defined, in the same way as N (Equations (A10), (A11))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

do k=1,Kit,1;0,n+ku=n+k−1u
do mit=1,Mit,1;m=mit−1
m+1,n+kuMF=SMF(

m,n+kuMF,
n+k−1u,�t,�t∗,FMF)

m+1,n+kuRSM=nuRSM

end do;n+ku=Mit,n+ku;end do

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇐⇒n+KituMF=NMF(

nu,CFL,CFL∗,FMF;Mit,Kit) (A15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

do k=1,Kit,1;1,n+ku=n+k−1u
do mit while [rMF�rTRG];m=mit−1;Mit=mit

m+1,n+kuMF=SMF(
m,n+kuMF,

n+k−1u,�t,�t∗,FMF)

m+1,n+kuRSM=nuRSM

end do;n+ku=Mit,n+ku;end do

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇐⇒n+KituMF=NMF(

nu,CFL,CFL∗,FMF;rTRG,Kit) (A16)

A.3. Realizability constraints and heuristic stabilization

It is quite possible, during the iterations, to obtain Reynolds stresses which do not satisfy the real-
izability constraints introduced by Schumann [109]. Such anomalous behaviour is systematically
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checked for at every subiteration. If the realizability constraints are not satisfied for a given grid
point nP, then all turbulence variables are set to 0 at this grid point (this is consistent with the
wall-boundary-conditions)

if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ũ′′2)nP<0 ∨ [(ũ′′v′′)nP]2−(ũ′′2)nP(ṽ′′2)nP>0 ∨
(ṽ′′2)nP<0 ∨ [( ˜v′′w′′)nP]2−(ṽ′′2)nP(w̃′′2)nP>0 ∨
(w̃′′2)nP<0 ∨ [( ˜w′′u′′)nP]2−(w̃′′2)nP(ũ′′2)nP>0 ∨

(det[˜u′′i u′′j ])nP<0 ∨
ε∗nP<0 ∨ (�∗T)nP=k3/2nP ε∗nP

−1
>�Tmax

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
:(uRSM)nP←−0 (A17)

where �Tmax is a maximum admissible length-scale (a characteristic order-of-magnitude length of the
configuration). Divisions by 0 are avoided throughout the code by adding 10−23 to the denominator
(for every fraction b1/b2∼=b1/(b2+10−23)). These simple realizability and boundedness fixes
(which are completely explicit and as a consequence easy to implement) were developed in Vallet
[89], and were found to stabilize the computations for all the cases studied using the single-
grid method [14]. In subsequent subiterations turbulence builds up again through diffusion from
neighbouring nodes. These explicit realizability constraints will be represented by the operator
R(u) used in constructing the subiteration operator S (Equation (A3)).

APPENDIX B: APPROXIMATE JACOBIANS AND APPROXIMATE FACTORIZATION

A structured multiblock implementation is followed in the present work. Let

u=[uT1 ,uT2 , . . . ,uTnD, . . . ,uTND
]T (B1a)

L=[LT
1 ,LT

2 , . . . ,LT
nD, . . . ,LT

ND
]T (B1b)

R=[RT
1 ,RT

2 , . . . ,RT
nD, . . . ,RT

ND
]T (B1c)

be partitions of the vectors of variables u∈R(12NP), of space-operators L∈R(12NP) and of the
vector of residuals R∈R(12NP), between structured subdomains nD∈[1,ND]. The linear system,
to be solved at each subiteration (Equation (A3)), reads[

I+�t∗∗
�LJ

nD

�unD
(m,n+1unD)

]
[m+1,n+1unD−m,n+1unD]=−�t∗∗nD[m,n+1RnD] ∀nD∈[1,ND] (B2)

Communication between subdomains uses NPH phantom nodes (NPH=5 for MUSCL3 or WENO3
reconstructions), with appropriate Dirichlet and/or von Neumann implicit boundary-conditions.

For the purpose of multi-equation turbulence model development, it is important to design the
approximate Jacobians in such a way that the increase of computational cost associated with the
increase of the number of turbulence variables (e.g. transport equations for the turbulent-heat-fluxes
�u′′i h′′, for the temperature-variance T̃ ′′2, or for the density-fluctuations �′2, . . .) be minimized.
Following Vallet [89], Chassaing et al. [14] achieved this by constructing an approximate space-
discretization operator LJ, whose derivative �LJ/�u is the Jacobian matrix used in constructing
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the subiteration operator S (Equation (A3)). This approximate space-operator LJ uses approximate
fluxes F J=FCJ+FVJ and approximate source terms SJ, in lieu of the numerical fluxes FN [14,
Equation (7), p. 765] and source terms S [14, Equation (8), p. 765]. The following approximations
were made:

1. source terms-Jacobians were neglected (SJ=0),
2. an O(�x) MUSCL extrapolation [27, 101] was used for computing the approximate convec-

tive fluxes FCJ,
3. the approximate viscous fluxes FVJ are designed so that the Jacobians of the viscous fluxes

are diagonalized.

With these approximations, which are described in detail in Chassaing et al. [14], the linear
system (Equation (B2)), after a reorganization of the global vectors of variables (Equations (B1a))
in a meanflow-vector uMF, and in a separate global vector for each turbulence variable
uuu,uuv,uvv,uvw,uww,uwu,uε, and similar reorganizations for L and R, takes the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I5NP+AMF 0

BMF

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

INP+aRSM
INP+aRSM
INP+aRSM
INP+aRSM
INP+aRSM
INP+aRSM
INP+aRSM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m+1,n+1�uMF

m+1,n+1�uuu
m+1,n+1�uuv

m+1,n+1�uvv

m+1,n+1�uvw

m+1,n+1�uww

m+1,n+1�uwu

m+1,n+1�uε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=−�t∗∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m,n+1RMF

m,n+1Ruu

m,n+1Ruv

m,n+1Rvv

m,n+1Rvw

m,n+1Rww

m,n+1Rwu

m,n+1Rε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B3)

where uMF=[(uTMF)1, (u
T
MF)2, . . . , (u

T
MF)NP]T∈R5NP is the global vector of the meanflow vari-

ables, uuu=[(�u′′u′′)1, (�u′′u′′)2, . . . , (�u′′u′′)NP]T∈RNP is the global vector of the uu Reynolds-
stress component (similar definitions apply to uuv, . . . ,uε, and to RMF, . . . ,Rε), and m+1,n+1�u :=
m+1,n+1u−m,n+1u. Obviously, in the above system (Equations (B3)) the meanflow-variables part
is decoupled from the RSM part. Furthermore the RSM part consists of 7 linear systems, with the
same matrix [INP+aRSM], so that the system (Equations (B3)) simplifies to

[I5NP+AMF][m+1,n+1�uMF] = −�t∗∗[m,n+1RMF]
[INP+aRSM][m+1,n+1�uuu] = −�t∗∗[m,n+1Ruu]−[BMF]uu[m+1,n+1�uMF]
[INP+aRSM][m+1,n+1�uuv] = −�t∗∗[m,n+1Ruv]−[BMF]uv[m+1,n+1�uMF]
[INP+aRSM][m+1,n+1�uvv] = −�t∗∗[m,n+1Rvv]−[BMF]vv[m+1,n+1�uMF]
[INP+aRSM][m+1,n+1�uvw] = −�t∗∗[m,n+1Rvw]−[BMF]vw[m+1,n+1�uMF]
[INP+aRSM][m+1,n+1�uww] = −�t∗∗[m,n+1Rww]−[BMF]ww[m+1,n+1�uMF]
[INP+aRSM][m+1,n+1�uwu] = −�t∗∗[m,n+1Rwu]−[BMF]wu[m+1,n+1�uMF]
[INP+aRSM][m+1,n+1�uε] = −�t∗∗[m,n+1Rε]−[BMF]ε[m+1,n+1�uMF]

(B4)
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These systems are inverted only approximately, for each subdomain nD∈[1,ND], by approxi-
mately factoring the system matrices to apply alternative-directions-implicit sweeps [73, 101, 102][

I+�t∗∗
�LJ

nD

�unD

]−1
AF−ADI

=
⎡⎣I+�t∗∗

(
�LJ

nD

�unD

)



⎤⎦−1
⎡⎣I+�t∗∗

(
�LJ

nD

�unD

)
�

⎤⎦−1
⎡⎣I+�t∗∗

(
�LJ

nD

�unD

)
�

⎤⎦−1 ∀nD∈[1,ND] (B5)

The previously presented simplifications (Equations (B4)) are applied for each sweep. The solution
of each linear system (
-, �-, �-wise) uses band-LU decomposition [110], which is performed only
once for the 7 systems corresponding to the turbulence variables (Equation (B4)).
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